- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anderson, Nathan (2)
-
Berk, Patrick (2)
-
Zhang, Dongxiao (2)
-
Acharya, Raja (1)
-
Augustine, John A (1)
-
Balmes, Kelly A (1)
-
Bozzano, Roberto (1)
-
Bucholtz, Anthony (1)
-
Connell, Kenneth J (1)
-
Cox, Christopher J (1)
-
Cronin, Meghan (1)
-
Cronin, Meghan F (1)
-
Edson, James (1)
-
Eyre, Jack (1)
-
Fairall, C W (1)
-
Farrar, J Thomas (1)
-
Grissom, Karen (1)
-
Guerra, Maria Teresa (1)
-
Honda, Makio (1)
-
Hormann, Verena (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate Stations (OCS) project provides in situ measurements for quantifying air-sea interactions that couple the ocean and atmosphere. The project maintains two OceanSITES surface moorings in the North Pacific, one at the Kuroshio Extension Observatory in the Northwest Pacific subtropical recirculation gyre and the other at Station Papa in the Northeast Pacific subpolar gyre. OCS mooring time series are used as in situ references for assessing satellite and numerical weather prediction models. A spinoff of the PMEL Tropical Atmosphere Ocean (TAO) project, OCS moorings have acted as “research aggregating devices.” Working with and attracting wide-ranging partners, OCS scientists have collected process-oriented observations of variability on diurnal, synoptic, seasonal, and interannual timescales associated with anthropogenic climate change. Since 2016, they have worked to expand, test, and verify the observing capabilities of uncrewed surface vehicles and to develop observing strategies for integrating these unique, wind-powered observing platforms within the tropical Pacific and global ocean observing system. PMEL OCS has been at the center of the UN Decade of Ocean Sciences for Sustainable Development (2021–2030) effort to develop an Observing Air-Sea Interactions Strategy (OASIS) that links an expanded network of in situ air-sea interaction observations to optimized satellite observations, improved ocean and atmospheric coupling in Earth system models, and ultimately improved ocean information across an array of essential climate variables for decision-makers. This retrospective highlights not only achievements of the PMEL OCS project but also some of its challenges.more » « less
-
Riihimaki, Laura D; Cronin, Meghan F; Acharya, Raja; Anderson, Nathan; Augustine, John A; Balmes, Kelly A; Berk, Patrick; Bozzano, Roberto; Bucholtz, Anthony; Connell, Kenneth J; et al (, Frontiers in Marine Science)Ocean surface radiation measurement best practices have been developed as a first step to support the interoperability of radiation measurements across multiple ocean platforms and between land and ocean networks. This document describes the consensus by a working group of radiation measurement experts from land, ocean, and aircraft communities. The scope was limited to broadband shortwave (solar) and longwave (terrestrial infrared) surface irradiance measurements for quantification of the surface radiation budget. Best practices for spectral measurements for biological purposes like photosynthetically active radiation and ocean color are only mentioned briefly to motivate future interactions between the physical surface flux and biological radiation measurement communities. Topics discussed in these best practices include instrument selection, handling of sensors and installation, data quality monitoring, data processing, and calibration. It is recognized that platform and resource limitations may prohibit incorporating all best practices into all measurements and that spatial coverage is also an important motivator for expanding current networks. Thus, one of the key recommendations is to perform interoperability experiments that can help quantify the uncertainty of different practices and lay the groundwork for a multi-tiered global network with a mix of high-accuracy reference stations and lower-cost platforms and practices that can fill in spatial gaps.more » « less
An official website of the United States government
